
Exploiting Geometric Constraints in Multi-Agent Pathfinding

Dor Atzmon1, Sara Bernardini1, Fabio Fagnani2, David Fairbairn3

1Royal Holloway, University of London, United Kingdom
2Politecnico di Torino, Italy

3Tharsus Limited, United Kingdom
dor.atzmon@rhul.ac.uk, sara.bernardini@rhul.ac.uk, fabio.fagnani@polito.it, david.fairbairn@tharsus.co.uk

Abstract

In tackling the multi-agent pathfinding problem (MAPF), we
study a specific class of paths that are constructed by taking
the agents’ shortest paths from the start to the goal locations
and adding safe delays at the beginning of the paths, which
guarantee that they are non-conflicting. Safe delays are calcu-
lated by exploiting a set of fundamental geometric constraints
among the distances between all agents’ start and goal loca-
tions. Those constraints are simple, but the MAPF problem
reformulated in terms of them remains computationally hard.
Nonetheless, based on safe delays, we devise a new, fast and
lightweight algorithm, called Delayed Shortest Path (DSP), to
find solutions to the MAPF problem. Via an extensive exper-
imental evaluation on standard benchmarks, we show that, in
many cases, our technique runs several orders of magnitudes
faster than related methods while addressing problems with
thousands of agents and returning low-cost solutions.

1 Introduction
Considering a set of agents that simultaneously move in an
environment, Multi-Agent Pathfinding (MAPF) (Stern et al.
2019) is the problem of finding conflict-free paths (a plan),
where each path leads an agent from its start position to
its end position. Conflicts between agents occur when two
agents are simultaneously at the same location or want to
swap locations. MAPF is relevant in several real-world ap-
plications, from self-driving cars (Wen, Liu, and Li 2022) to
automated warehouses (Li et al. 2020) and squads of flying
drones (Ho et al. 2019). In MAPF, the path’s cost is equal
to its length and a common way to define the plan cost is to
consider the sum of the costs of its paths. Finding the lowest-
cost (optimal) solution for MAPF is NP-complete (Surynek
2010; Yu and LaValle 2013). Nevertheless, a number of al-
gorithms solve MAPF optimally for many agents, including
M* (Wagner and Choset 2015), Increasing Cost Tree Search
(ICTS) (Sharon et al. 2013), and CBS (Sharon et al. 2015).

In this paper, we devise a simple technique, which we
call Delayed Shortest Path (DSP), based on the idea that
non-conflicting paths can be generated by considering the
agents sequentially according to a given order, taking their
shortest paths from start to goal location and adding delays

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

at the beginning of the paths to avoid conflicts. The algo-
rithm SEQ (Sequence) (Ma 2021) does that but, for each
agent, naively chooses a relative delay that is equal to the
length of the shortest path of the agent that precedes it in the
order. Hence, in SEQ, one agent at a time follows its shortest
path to destination while the other agents wait. We improve
SEQ by calculating safe delays, i.e. relative delays that are
possibly shorter than the shortest path of the previous agent
in the order but are long enough to safely avoid conflicts.

We calculate safe delays by identifying a set of funda-
mental geometric constraints among the distances between
all start and goal locations of the agents that, when satisfied,
guarantee that shortest paths are non-conflicting. Starting
from safe delays, which we show are the best possible delays
that can be calculated based on information about the agents’
start and goal locations, we approximate minimal delays via
an iterative method. The resulting algorithm is lightweight
and fast and can handle thousands of agents at a cost that is
often several orders of magnitude lower than related tech-
niques. Our algorithm has several benefits. It is effective
while using very little information about the agents (their
start and goal locations and corresponding shortest paths),
and involving no planning. It also minimizes the time the
agents spend moving on the environment and, hence, their
use of resources (e.g. battery) as, when they move, they al-
ways follow their shortest path to destination. Finally, our
technique does not impose the agents to take any particular
shortest paths among those available, which means that the
agents can preserve their privacy. In some applications (e.g.
self-driving cars), this is a valuable feature.

After introducing MAPF and safe delays formally in Sec.
2 and 3, we present the geometric constraints to calculate
safe delays in Sec. 4. In Sec. 5, we prove that finding mini-
mal safe delays is NP-complete and put forward the DSP al-
gorithm that finds approximate solutions to such a problem
in Sec. 6. To offer evidence of the power of our technique,
in Sec. 7, we present an extensive experimental evaluation
on several benchmark grids. We end our paper with related
work (Sec. 8) and conclusions (Sec. 9).

2 Multi-Agent Pathfinding
We consider an undirected graph G = (V,E) and a finite set
of k agents A = {1, . . . , k}. Every agent i ∈ A is associated
with a start vertex si ∈ V and a goal vertex gi ∈ V , with si ≠



gi. For any two agents i and j (i ≠ j), si ≠ sj and gi ≠ gj .
Given these vectors collecting all start and goal vertices s
and g, we call the tuple (G, k, s, g) a MAPF instance.

A path in G from x ∈ V to y ∈ V is any function π ∶
{a, a + 1, . . . , b} → V such that (π(t), π(t + 1)) ∈ E for
every t = a, . . . , b − 1 and such that π(a) = x and π(b) = y.
We assume that ∃(x,x) ∈ E for every x ∈ V . This means
that, at every step, an agent following a path can move to
an adjacent vertex or remain still at its current vertex. We
denote aπ = a, bπ = b, and lπ = b − a to be, respectively, the
starting time, the arrival time and the length of path π. We
exclusively consider paths with starting time aπ ≥ 0.

Given x, y ∈ V , we indicate with d(x, y) the geodetic dis-
tance between x and y in G, namely, the minimum length
of any path from x to y. A common assumption in MAPF is
that d(x, y) between any two vertices x and y is known. This
information can be calculated in advance in a preprocessing
computation and stored in memory for later use.

Let Πi be the set of all minimum length paths π in the
graph from si to gi and Πt

i the set of minimum length paths
from si to gi with starting time equal to t (specifically, Π0

i
means starting time 0). Given two paths πi ∈ Πi and πj ∈ Πj

of agents i, j ∈ A, let aπi,πj = max(aπi , aπj), bπi,πj =
min(bπi , bπj) be, respectively, the maximum starting time
and the minimum arrival time of the two paths.

We assume that all agents are present outside the en-
vironment in the beginning; each agent can start moving
immediately at time 0 or can be delayed outside the en-
vironment. Hence, an agent moving according to a path
π ∶ {a, a + 1, . . . , b} → V is only present in the environment
at times between a and b, while it is outside the environment
at all the other times. This assumption, which is common in
warehouse environments, implies that an agent starts mov-
ing when it appears at si (at 0 or after a delay) and disappears
when it arrives at gi (disappear at target (Stern et al. 2019)).

We have the following definition of conflict (here and be-
low, intervals are always intended on the integers).

Definition 1. Two paths πi ∈ Πi and πj ∈ Πj are called
non-conflicting if the following two conditions hold:

(a) ∀t ∈ [aπi,πj , bπi,πj ] ∶ πi(t) ≠ πj(t)
(b) ∀t ∈ [aπi,πj , bπi,πj − 1] ∶ (πi(t), πi(t + 1)) ≠ (πj(t +

1), πj(t))
The conflict defined in condition (a) is called a vertex

conflict, where two agents are simultaneously positioned at
the same vertex, and the conflict in condition (b) is called a
swapping conflict, where two agents swap positions in two
consecutive time steps.

Definition 2. A solution to a MAPF instance (G, k, s, g) is
a family of paths Π = {πi ∣ i ∈ A} such that, for every
i, j ∈ A with i ≠ j, πi and πj are non-conflicting. The cost
of a solution is defined as follows:

C(Π) = ∑
i∈A

bπi

This cost is known as sum-of-costs, which is one of the
most commonly used metrics in MAPF (Stern et al. 2019).

We denote the set of solutions to the MAPF instance
(G, k, s, g) byM(G,k,s,g). MAPF aims to solve the follow-
ing optimization problem:

C(G,k,s,g) =min{C(Π) ∣ Π ∈M(G,k,s,g)} (1)

3 Safe Delays
A simple way to generate solutions to a MAPF instance is to
start from a family of minimum-length paths, one for each
agent, with starting time equal to 0 and then delay the en-
trance of some of the agents into the environment to avoid
conflicts. We formalize this idea below.

Given i ∈ A, π ∈ Π0
i , and τ ∈ N0, we define the mapping

πτ ∶ [aπ + τ, bπ + τ]→ V as follows:

∀t ∈ [aπ + τ, bπ + τ] ∶ πτ(t) = π(t − τ)
Hence, τ is the delay of agent i. When τ > 0, the agent waits
τ − 1 time steps outside the environment and then starts its
motion from si to gi at time τ . We now give the concept of
safe delays, which are introduced to avoid conflicts.
Definition 3. A family of delays {τi ∣ i ∈ A} is called safe for
a MAPF instance (G, k, s, g) if, for every choice of πi ∈ Π0

i ,
the set of paths {Πτi

i ∣ i ∈ A} is a solution to (G, k, s, g).
We assemble families of delays into vectors τ ∈ Nk

0 and call
them delay assignments.

Figure 1: Examples for safe delays.

Example 1. Figure 1 illustrates three instances with two
agents. The shortest paths are: (a) πi = (si,A, gi) and πj =
(sj ,B, gj); (b) πi = (si,A, gi) and πj = (sj ,B,A, gj); (c)
πi = (si,A, gi) (or (si,B, gi)) and πj = (sj ,B,A, gj). In
(a), all values of τi and τj are safe. In (b), for instance, τi = 0
and τj = 0 are safe, while τi = 1 and τj = 0 are not safe. In
(c), for instance, τi = 0 and τj = 1 are safe, while τi = 0 and
τj = 0 or τi = 1 and τj = 0 are not safe.

Our aim is to give sufficient conditions for delay as-
signments to be safe so that it is easy to generate solu-
tions for a MAPF instance. To keep our approach simple
and lightweight, we put forward conditions that are purely
based on fundamental geometric relationships between the
start and goal vertices of the agents involved in a MAPF in-
stance. To express this geometric information, we augment
MAPF instances (G, k, s, g) with a set of three k × k ma-
trices ∆ = (∆s,∆sg,∆g) and call ∆ the distance profile
of (G, k, s, g). The matrix ∆s contains all possible pairwise
distances between the agents’ start vertices; ∆sg contains
all pairwise distances between the agents’ start and goal ver-
tices; and ∆g contains all pairwise distances between the
agents’ goal vertices. In formulas,

∆s
ij = d(si, sj), ∆sg

ij = d(si, gj), ∆
g
ij = d(gi, gj) (2)



Often, we work with distance profiles ∆ without referring
to any particular MAPF instance. A triple of non-negative
matrices ∆ = (∆s,∆sg,∆g) (with ∆sg

ii > 0 for every i)
is the distance profile of some MAPF instance if and only
if all the following inequalities, corresponding to distance
triangular inequalities between the four points, are satisfied.

∆s
ij ≤∆

sg
ii +∆

sg
ji , ∆

s
ij ≤∆

sg
jj +∆

sg
ij

∆g
ij ≤∆

sg
ii +∆

sg
ij , ∆

g
ij ≤∆

sg
jj +∆

sg
ji

∆sg
ii ≤∆s

ij +∆
sg
ji , ∆

sg
ii ≤∆

g
ij +∆

sg
ij

∆sg
jj ≤∆s

ij +∆
sg
ij , ∆

sg
jj ≤∆

g
ij +∆

sg
ji

∆sg
ij ≤∆s

ij +∆
sg
jj , ∆

sg
ij ≤∆

g
ij +∆

sg
ii

∆sg
ji ≤∆s

ij +∆
sg
ii , ∆

sg
ji ≤∆

g
ij +∆

sg
jj

(3)

We call T∆ the set of delay assignments that are safe with
respect to any MAPF instance having distance profile ∆ and
have the following definition.
Definition 4. Given a distance profile ∆, we denote T∆
the set of delay assignments τ such that, for every MAPF
instance (G, k, s, g) whose distance profile is ∆ and for
every choice of shortest paths πi ∈ Π0

i , the set of paths
{Πτi

i ∣ i ∈ A} is a solution to (G, k, s, g).
Given a distance profile ∆, our goal is to analyze the fol-

lowing optimization problem:

C∆ = min
τ∈T∆

∑
i∈A

τi (4)

Notice that, by construction, for every MAPF instance
(G, k, s, g) whose distance profile is ∆, we have that

C(G,k,s,g) ≤ C∆ +∑
i∈A

d(si, gi) (5)

To study the problem in expression (4), we need an ex-
plicit description of T∆, which is given in the next section.

4 Geometric Constraints
Recall that the non-conflicting property between two paths
given in Definition 1 is expressed in terms of pairwise con-
ditions. A similar pairwise description holds for the set T∆.
If we denote by ∆(ij) the triple of matrices (∆s,∆sg,∆g)
restricted to agents i and j, we have that

τ ∈ T∆ ⇔ (τi, τj) ∈ T∆(ij) ∀i ≠ j (6)

We now give an explicit description of the sets T∆(ij) . To
this aim, we introduce two additional k × k matrices Λ and
Ψ defined as follows:

Λij =∆sg
ii −∆

sg
ji , Ψij =∆s

ij +∆g
ij −∆

sg
ii −∆

sg
jj

Theorem 5 below shows that the delays T∆(ij) can be estab-
lished based on Λij and Ψij : if Ψij > 0, then agents i and j
cannot possibly interfere with one another and so any delay
can be chosen for τi and τj . However, if Ψij ≤ 0, agents i
and j can potentially conflict and, to avoid that, τi and τj
need to be chosen appropriately. Note that the theorem gives
necessary and sufficient conditions for the delays to be safe,
which implies that no additional delays between two agents
can be calculated based on the available information ∆(ij)1.

1The conditions can be easily reformulated under different as-
sumptions than those made in this paper.

Example 2. Consider again our examples in Figure 1. We
can see that (a) Ψij = 2,Λij = −1,Λji = −1; (b) Ψij =
0,Λij = 0,Λji = 1; (c) Ψij = 1,Λij = 0,Λji = 1. In (a), as
mentioned, any pair of delays is safe. However, in (b), τi and
τj are safe if τj − τi ∈ (−∞,−1)∪ [0,+∞) (defined formally
below), which means that τj −τi = −1 is not safe (e.g., τi = 1
and τj = 0). And, in (c), τj−τi ∈ (−∞,−1)∪(0,+∞) is safe.
Theorem 5. For every distance profile ∆ and for every i ≠ j,
(τi, τj) ∈ T∆(ij) ⇔ τj − τi ∈ Lij where

Lij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z if Ψij > 0

(−∞,−Λji) ∪ (Λij ,+∞)∪
({−Λji,Λij} ∩ (∆s

ij + 1 + 2Z)) if Ψij = 0

(−∞,−Λji) ∪ (Λij ,+∞) if Ψij < 0
(7)

Proof We first prove ⇐. We fix any MAPF problem in-
stance (G, k, s, g) having distance profile ∆ and two distinct
agents i and j. We now choose any two paths πi ∈ Π0

i and
πj ∈ Π0

j . Suppose that the delay pair (τi, τj) ∈ N0 × N0

is such that πτi
i and π

τj
j are conflicting in a vertex, namely

there exists max{τi, τj} ≤ t ≤ b
π
τi
i ,π

τj
j

such that πτi
i (t) =

π
τj
j (t). This yields πi(ti) = P = πj(tj) where ti = t−τi and

tj = t − τj . We have that

d(si, sj) + d(gi, gj) ≤ d(si, P ) + d(P, sj)+
d(gi, P ) + d(P, gj)

= d(si, gi) + d(sj , gj)
(8)

where the inequality follows from the triangular inequality
and the equality follows from the fact that P belongs to a
minimum path from si to gi and a minimum path from sj to
gj . This yields Ψij ≤ 0. Moreover, the following holds true

τj − τi = ti − tj = d(si, P ) − d(sj , P )
= [d(si, P ) + d(P, gi)]
− [d(sj , P ) + d(P, gi)]
≤ d(si, gi) − d(sj , gi)

(9)

This yields τj − τi ≤ Λij . A symmetric argument also yields
τi − τj ≤ Λji. Suppose now that Ψij = 0, τj − τi = Λij , and
that Λij −d(si, sj) is an odd number. The condition Ψij = 0
implies that all the relations in (8) must be equalities so that,
in particular, d(si, sj) = d(si, P )+d(P, sj). Combining this
with the equality τj − τi = d(si, P ) − d(sj , P ) obtained
from expression (9), we deduce that τj − τi − d(si, sj) =
−2d(P, sj) contradicting that τj − τi − d(si, sj) is odd. This
shows that if delays are chosen such that τj − τi ∈ Lij , the
delayed paths πτi

i and π
τj
j satisfy condition (a) in Defini-

tion 1. We claim that they also satisfy condition (b). Indeed,
if by contradiction they did not, then both pairs πτi+1

i , π
τj
j

and πτi
i , π

τj+1
j would present a vertex conflict. However, if

τj − τi ∈ Lij , necessarily at least one of the two numbers
τi + 1 − τj or τi − τj − 1 is in Lij and thus would lead to
paths without vertex conflict. This contradiction implies that
condition (b) must also be satisfied.

We now prove⇒. To this aim, we take any pair of distinct
agents i and j and a pair of delays (τi, τj) such that τj − τi /∈



Lij . Notice that this necessarily implies that Ψij ≤ 0. We
split this condition into three possible cases:
(a) Ψij < 0, −Λji ≤ τj − τi ≤ Λij

(b) Ψij = 0, −Λji ≤ τj − τi ≤ Λij , τj − τi −∆s
ij even

(c) Ψij = 0, −Λji < τj − τi < Λij , τj − τi −∆s
ij odd

(10)
When (10) is satisfied, we will prove that there exists a
MAPF problem instance (G, k, s, g) having distance profile
∆ and two paths πi ∈ Π0

i and πj ∈ Π0
j such that πτi

i and π
τj
j

are conflicting in a vertex (if (a) or (b) in expression (10)
hold true) or in an edge (if (c) in expression (10) holds true).
As only agents i and j will play a role in this construction,
we assume from now on that k = 2 and A = {i, j}.

We first assume that condition (a) or (b) in (10) is sat-
isfied, and we study the presence of vertex conflicts. We
construct a MAPF instance based on the graph depicted
in Fig. 2 (left), which represents the two starting points
si, sj , the two goal points gi, gj , the point P and the paths
αi, αj , βi, βj , µij , νij , λij , λji (all with starting time 0) ob-
tained connecting these points and possibly containing extra
vertices. We assume that

lµij
=∆s

ij , lνij
=∆g

ij , lλij =∆
sg
ij , lλji =∆

sg
ji

We now define xi = lαi
, xj = lαj , yi = lβi , yj = lβj and

consider the following set of equalities and inequalities:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xi + τi = xj + τj
xi + yi =∆sg

ii
xj + yj =∆sg

jj

xi + xj ≥∆s
ij

yi + yj ≥∆g
ij

xi + yj ≥∆sg
ij

xj + yi ≥∆sg
ji

(11)

We notice that the second and third equalities
and the last four inequalities imply that all paths
αi, αj , βi, βj , µij , νij , λij , λji are shortest paths. In
particular, they imply that the geodetic distances among all
the points si, sj , gi, gj coincide with those assigned by ∆.
If we define πi and πj as the concatenation of the pair of

paths, respectively, αi, β
lαi

i and αj , β
lαj

j , the second and
third equalities imply that πi ∈ Π0

i and πj ∈ Π0
j . Finally, the

first equality implies that πτi
i and π

τj
j are conflicting in P .

Therefore, the only thing that remains to be done is to
show the feasibility of our construction, namely that there
exist non negative integer values xi, xj , yi, and yj solv-
ing the set of equalities and inequalities in (11). We notice
first that, based on the first three equalities, we can write
xj , yi, yj in terms of the variable xi:

xj = xi + τi − τj , yi = −xi +∆sg
ii

yj = −xi + τj − τi +∆sg
jj

(12)

Substituting (12) into the last four inequalities of (11), we
now obtain

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

xi ≥ 1
2
[∆s

ij + τj − τi]
xi ≤ 1

2
[∆sg

ii +∆
sg
jj −∆

g
ij + τj − τi]

∆sg
jj − τi + τj ≥∆

sg
ij

τi − τj +∆sg
ii ≥∆

sg
ji

(13)

si sj

gi gj

P

αi

αj

βi
βj

µij

λij
λji

νij

si sj

gj gi

αj

βiβj

µij

λij λji

νij

αi

P Q

Figure 2: Proof auxiliary graphs.

Finally, the non negativity constraints on xi, xj , yi, and
yj are equivalent to

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

xi ≥ 0
xi ≥ τj − τi
xi ≤∆sg

ii
xi ≤ τj − τi +∆sg

jj

(14)

So, we are left to show that there exists an integer solution
xi to the inequalities in (13) and (14). Notice first how the
last two inequalities in (13) do not depend on xi and are
always true thanks to the inequalities in (10). The remaining
inequalities are equivalent to prove that given

A1 = 0,A2 = τj − τi, A3 = 1
2
[∆s

ij + τj − τi]
B1 =∆sg

ii ,B2 = τj − τi +∆sg
jj ,

B3 = 1
2
[∆sg

ii +∆
sg
jj −∆

g
ij + τj − τi]

(15)

there exists a non negative integer x1 such that Ai ≤ x1 ≤ Bj

for every i, j = 1,2,3. We split the proof into three cases:
• Case 1: maxAi ∈ {A1,A2}. In this case, since A1,A2

are both integer, it is sufficient to prove that Ai ≤ Bj for
i = 1,2 and j = 1,2,3. A1 ≤ B1 follows from the fact that
∆sg

ii is by definition non negative. A1 ≤ B2 and A1 ≤ B3

both follow from the inequalities in (10):

B2 = τj − τi +∆sg
jj ≥ −Λji +∆sg

jj

= −∆sg
jj +∆

sg
ij +∆

sg
jj =∆

sg
ij ≥ 0

(16)

B3 = 1
2
[∆sg

ii +∆
sg
jj −∆

g
ij + τj − τi]

≥ 1
2
[∆sg

ii +∆
sg
jj −∆

g
ij −∆

sg
jj +∆

sg
ij ]

≥ 1
2
[∆sg

ii −∆
g
ij +∆

sg
ij ] ≥ 0

(17)

where the last inequality follows from ∆ being a distance
profile. We now consider A2. Notice that, because of the
inequalities in (10), we have:

A2 ≤ Λij =∆sg
ii −∆

sg
ji ≤∆

sg
ii = B1

while A2 ≤ B2 follows again from the non negativity of
∆sg

jj . Finally, notice that A2 ≤ B3 is equivalent to τj−τi ≤
∆sg

ii +∆
sg
jj −∆

g
ij and this follows again from (10) and ∆

being a distance profile.
• Case 2: maxAi = A3, minBj ∈ {B1,B2}. As B1 and
B2 are integer, it is sufficient to prove that A3 ≤ B1 and
A3 ≤ B2. The inequality A3 ≤ B1 follows again from
applying (10) and the fact that ∆ is a distance profile:

A3 =
1

2
[∆s

ij+τj−τi] ≤
1

2
[∆s

ij+∆sg
ii −∆

sg
ji ] ≤∆

sg
ii (18)



The inequality A3 ≤ B2 is equivalent to ∆s
ij ≤ τj − τi +

2∆sg
jj and this follows again from τj − τi ≥ −Λji.

• Case 3: maxAi = A3, minBj = B3. Notice that B3 −
A3 = − 1

2
Ψij ≥ 0. If Ψij ≤ −1, this means that B3 −A3 ≥

1/2 and, as a consequence, there exists an integer A3 ≤
x1 ≤ B3. Instead, if Ψij = 0, we have that B3 = A3. In
this case, thanks to conditions (b) of (10), we know that
∆s

ij + τj − τi is even and thus A3 is an integer.
We are left with studying case (c) of (10). In this case, we
construct a MAPF instance based on the graph depicted in
Fig. 2 (right). Using the same definitions and notations of the
previous case, we can prove that showing the feasibility of
the construction and the existence of a swapping conflict is
equivalent to showing the existence of non negative integer
values xi, xj , yi, and yj that solve the following system:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xi + τi = xj + τj
xi + yi =∆sg

ii − 1
xj + yj =∆sg

jj − 1
xi + xj ≥∆s

ij − 1
yi + yj ≥∆g

ij − 1
xi + yj ≥∆sg

ij

xj + yi ≥∆sg
ji

(19)

If we define the triple ∆̃ = (∆̃s, ∆̃sg, ∆̃g) by setting

∆̃s
ij =∆s

ij − 1, ∆̃g
ij =∆

g
ij − 1

∆̃sg
ii =∆

sg
ii − 1, ∆̃

sg
jj =∆

sg
jj − 1, ∆̃

sg
ij =∆

sg
ij , ∆̃

sg
ji =∆

sg
ji

we claim that a solution exists by applying the same consid-
erations used to prove the existence of a solution to (11). By
arguing as above, a solution to (19) is equivalent to finding a
non negative integer x1 that solves the two set of inequalities
(13) and (14) with ∆ replaced by ∆̃. Notice that the last two
inequalities in (13) become

τj − τi ≥ ∆̃sg
ij − ∆̃

sg
jj = −Λji + 1

τj − τi ≤ ∆̃sg
ii − ∆̃

sg
ji = Λij − 1

which are true thanks to the relations in condition (c) of (10).
As for the rest, we can repeat the same arguments as above
noting that the only facts needed in the proofs of the various
steps are the following:
(i) ∆̃sg

ii , ∆̃
sg
jj , ∆̃

sg
ij , ∆̃

sg
ji are non negative;

(ii) the triangular inequalities ∆̃sg
ii + ∆̃

sg
ij ≥ ∆̃

g
ij and the anal-

ogous ones replacing ii with jj and ij with ji hold true;
(iii) ∆̃s

ij + τj − τi is even.
Now note that: (i) holds because of the assumption that si ≠
gi and sj ≠ gj . (ii) holds by inspection. (iii) holds because
of condition (c) of (10) and the definition of ∆̃s

ij .
The proof is now complete.

Theorem 5 and relation (6) yield an algebraic description
of the set T∆ in terms of the pairwise conditions described in
expression (7). For every distance profile ∆, τ ∈ Nk

0 belongs
to T∆ if and only if, for every i, j ∈ A such that Ψij ≤ 0,
we have that τj − τi ∈ Lij . Notice that in the special case of
Λij + Λji < 0, condition (7) is always satisfied. This means
that all pairs of agents such that Ψij > 0 or Λij +Λji < 0 are
not constrained in their corresponding delays.

5 Complexity Analysis
Despite the explicit description of the set T∆ given in Sec.
4, the minimization problem in expression (4) is hard. More
precisely, let us consider the corresponding decision prob-
lem, stated below.
Problem 1. Given a distance profile ∆ and m ∈ N, it exists
τ ∈ T∆ such that ∑

i∈A
τi ≤m.

We show that Problem 1 is NP-complete by proving that
it is equivalent to a well-known NP-complete scheduling
problem (membership in NP is trivial). Let J1, J2, . . . , JN
be N jobs to be scheduled on one single machine. For each
job Ji, we call Si its starting time, pi its processing time and
Ci its completion time. Each job is also characterized by
a release time ri ≥ 0, which is its earliest possible starting
time. The problem we consider is traditionally indicated as
n ∣ 1 ∣ ri ≥ 0 ∣∑iCi and can be formulated as follows. Find
a schedule Z that minimizes the sum of the completion
times, i.e. ∑N

i=1Ci, and satisfies the following constraints:

∀i Si ≥ ri
∀i, j ∈ Z Sj − Si ≥ pi or Si − Sj ≥ pj (20)

Lenstra, Rinnooy Kan, and Brucker (1977) demonstrate
that this problem is NP-complete by exhibiting a reduction
from the 3-Partition problem.

We now show that the scheduling problem n ∣ 1 ∣ ri ≥
0 ∣∑iCi can be reformulated into the problem given in ex-
pression (4). Let us put τi = Si − ri. The constraints in ex-
pression (20) can be rewritten as follows:

∀i τi ≥ 0
∀i, j ∈ T τj − τi ≥ pi + ri − rj or τi − τj ≥ pj + rj − ri

(21)
As for the objective function, the scheduling problem

n ∣ 1 ∣ ri ≥ 0 ∣∑iCi aims to find a schedule Z such that:
argminZ ∑N

i=1Ci. The following equivalences hold.

argmin
Z

N

∑
i=1

Ci = argmin
Z

N

∑
i=1

Si = argmin
T

N

∑
i=1

τi

We notice that the last expression is the same used for our
problem and that the constraints match those in our problem
as long as we can find a distance profile ∆ for which Λij =
pi + ri − rj − 1 and Ψij < 0 for every pair of jobs i ≠ j.

Proposition 6. For every matrix Λ̄ ∈ RV×V , there exists a
distance profile ∆ = (∆s,∆sg,∆g) such that

Λij = Λ̄ij , Ψij < 0 ∀i ≠ j
Proof Recall that a triple of non-negative matrices ∆ =
(∆s,∆sg,∆g) is a distance profile if all related triangular
inequalities given in expression (3) are satisfied. Imposing
that Λ = Λ̄, we can rewrite these inequalities as follows:

max{∣Λ̄ij ∣, ∣Λ̄ji∣} ≤∆s
ij ≤min{Λ̄ij + 2∆sg

ji , Λ̄ji + 2∆sg
ij }

max{∣Λ̄ij +∆sg
ji −∆

sg
ij ∣, ∣Λ̄ji +∆sg

ij −∆
sg
ji ∣} ≤∆

g
ij ≤

≤min{Λ̄ij +∆sg
ji +∆

sg
ij , Λ̄ji +∆sg

ij +∆
sg
ji }

∆s
ij +∆

g
ij < Λ̄ij + Λ̄ji +∆sg

ij +∆
sg
ji

(22)



The variables ∆s
ij , ∆g

ij , ∆sg
ji , ∆sg

ij must all be non negative
for every i ≠ j. Moreover, it must hold that, for every i ∈ V ,

Λ̄ij +∆sg
ji = Λ̄ik +∆sg

ki > 0 ∀j, k ≠ i (23)

This guarantees that Λij = Λ̄ij can be achieved by setting
∆sg

ii > 0 = Λ̄ij +∆sg
ji . We now fix a job, say 1, and we set

∆sg
ij = Λ̄j1 − Λ̄ji + 2q, ∆s

ij =∆g
ij = q

for q ∈ N. It follows from relations (22) and (23) that, if q is
sufficiently large, all conditions are satisfied.

Corollary 7. Problem 1 is NP-complete.
While, in our proof, we focus on the sum-of-costs objec-

tive function, following Lenstra, Rinnooy Kan, and Brucker
(1977), other objectives (as makespan) may be considered.

6 Delayed Shortest Path (DSP)
In DSP, the agents follow their shortest paths, according to
a given total priority order PO = (1̂, . . . , k̂). PO states that,
for every two agents î, ĵ ∈ PO such that ĵ < î, agent ĵ has
a higher priority than agent î. Let PO

<î = PO/{ĵ ∣̂i ≤ ĵ}.
Before start moving, the agents might be delayed to avoid
conflicts with agents with higher priority. As the first agent 1̂
has the highest priority, it can follow its shortest path without
delays, i.e. τ1̂ = 0. The delay of an agent î may be influenced
by any other agent in PO

<î. Hence, the value of τî must be
safe when it is paired with value τĵ of any agent ĵ in PO

<î.
The pseudo-code of DSP is presented in Algorithm 1. An

empty solution Π and an empty list of delays τ are initialized
in lines 2-3. We use τ to maintain the delays of the agents.
In lines 4-9, we go over each agent î according to the prior-
ity order PO and calculate its safe delays τî by invoking the
function SafeDelays. The minimal safe delay returned by the
function is stored in τ (line 8). In line 9, the algorithm aug-
ments the plan Π with the path of agent î, which is delayed
by τî time steps and then follows its shortest path.

SafeDelays calculates safe delays for the agent î, stores
them in T (by shifting Lî,ĵ) and returns the minimum.

Note that DSP does not perform a search in the graph. It
only uses the costs of the shortest paths to determine when
each agent should start following its shortest path. There-
fore, the complexity of DSP is mainly influenced by the
number of agents and not by the length of their paths.

7 Experimental Study
To examine the performance of DSP, we compare it with a
few well-known MAPF algorithms as described below.

7.1 Algorithms
SEQ. An algorithm closely related to DSP is SEQ (Ma
2021), which was originally proposed for theoretical pur-
poses on online MAPF (or well-formed) instances. Accord-
ing to a given total priority order of agents, a single agent
at a time follows its shortest path to the goal vertex while
all the other agents wait at their start vertices. The algorithm
ends when all agents have reached their goals.

Algorithm 1: Delayed Shortest Path (DSP)
1 Main(MAPF instance, Priority Order PO)
2 Init Π with an empty solution
3 Init τ with an empty list
4 foreach î ∈ PO do
5 τî ← 0
6 if τ is not empty then
7 τî ← SafeDelays(PO, τ, î)

8 τ [̂i] = τî
9 Π← Π ∪ {πτ

î}

10 return Π

11 SafeDelays(Priority Order PO, Delays τ , Agent î)
12 Init T ← N0

13 foreach ĵ ∈ PO
<î do

14 τĵ ← τ[ĵ]

15 T ← T ∩ {τĵ −Lî,ĵ}

16 return minτ ′∈T (τ
′
)

Figure 3: Example in which DSP outperforms PP.

Prioritized Planning (PP). In PP (Erdmann and Lozano-
Pérez 1987), the agents may not necessarily follow their
shortest paths. According to a given total priority order of
agents, PP computes paths for them, one by one. When PP
searches for a path, the path must not conflict with the paths
of higher priority agents (prior in the given order). This can
be done, for instance, by searching in a space-time configu-
ration, e.g., by using Space-Time A* (Silver 2005). Here too,
agents may delay their start times. We use the pre-calculated
costs of the shortest path between any two cells as a heuristic
for PP. PP is not optimal nor complete. Practically, it usually
performs well and, in many cases, returns near-optimal solu-
tions. Under our assumptions on agents’ appearance and dis-
appearance, PP is complete (all instances below are solved).
We also consider a PP version that uses one shortest path for
each agent and executes PP on that path (SPP).

While PP plans paths for the agents and DSP only defines
safe delays, in some cases, DSP outperforms PP when both
use the same priority order. Fig. 3 illustrates such a case with
three agents: 1,2, and 3. Let us assume that the priority order
is (1,2,3) for DSP and PP. According to DSP, the first agent
is not delayed (τ1 = 0), the second agent is delayed 3 time
steps (τ2 = 3), and the third agent is not delayed (τ3 = 0).
This results in a solution of cost 15. In PP, the first agent is
not delayed, and its path costs 4. However, the second agent
follows a path of cost 6 (which passes through the row below
its start and goal vertices) because it chooses the shortest
path that avoids conflicts with the first agent. As a result, the
third agent follows a path of cost 6, with a resulting solution
of cost 16, which is higher than the one created by DSP.



𝑋 𝑋 … 𝑋 𝑋

𝑋 … 𝑋

𝑋 𝑋 … 𝑋 𝑋

(a) (b) (c) (d)

Figure 4: (a) Empty. (b) Corridor. (c) Grid w/ obs. (d) Maze.

7.2 Priority Orderings
All algorithms DSP, SEQ, SPP, and PP use a given priority
order for the agents. We now present existing priority or-
dering functions (Ma et al. 2019) as well as a new one based
on our geometric constraints. SH (Shortest path first) gives
a higher priority to agents with shorter paths. LH (Longer
path first) is the opposite of SH and gives a higher prior-
ity to agents with longer paths. RND prioritizes the agents
randomly. LD (Lowest delays first) is a greedy method that
prioritizes agents according to the lowest safe delay. Start-
ing with an empty priority order PO and an empty set of
delays τ , we call SafeDelays (Algorithm 1) for each agent.
Then, we choose the agent with the lowest delay, adding it to
PO and its delays to τ . We continue this process until PO
contains all agents. LD breaks ties according to LH.

7.3 Domains
We perform experiments on four maps, presented in Fig. 4.
Fig. 4(a) illustrates an empty grid, without obstacles, where
the agents enter and leave the grid from the borders (marked
by X in the figure), i.e., their start and goal cells are adja-
cent to the borders. We denote by R the number of rows in
the grid and by C the number of columns. Fig. 4(b) presents
a special case of the empty grid, where there is only a sin-
gle row (R = 1). Thus, all agents must pass through this
long corridor. Arguably, the long corridor is a challeng-
ing MAPF scenario as the agents must share cells along
their paths and, therefore, may easily conflict. The map in
Fig. 4(c) generalizes the empty grid to a grid with obsta-
cles. To ensure that the problem remains solvable, the ob-
stacles are only allocated in the bold rectangle area, i.e., in
rows 2 to ∣R∣−1 and in columns 2 to ∣C ∣−1. Allocating 100%
obstacles means that the bold rectangle is full of obstacles.
Fig. 4(d) shows a maze grid, called maze-128-128-1, from
the MovingAI repository (Sturtevant 2012).

7.4 Experiments
In our experiments (performed by Intel Xeon E5-2660
v4,2.00GHz processor with 16GB RAM), we evaluate DSP,
SEQ, SPP, and PP with each of the four priority orders
(RND, SH, LH, and LD). Each result in our experiment is
averaged on 50 randomly created instances. We measure the
cost of the returned solution and the runtime (in sec).

Table 1 presents the average cost (in thousands) on (a)
100 × 100 empty grids (Fig. 4(a)), (b) 1 × 100 long corridor
grids (Fig. 4(b)), (c) grids with randomly allocated obstacles
(Fig. 4(c)), and (d) maze grids (Fig. 4(d)). In (a), (b), and (d),
we perform experiments with 20, 40, 60, 80, and 100 agents
and, in (c), we experiment with 100 agents and varied the

percentage of obstacles. Table 2 shows representative results
of the average runtime and the average preprocessing time of
all algorithms (in sec). In all these experiments, the average
runtime of DSP and SEQ with RND, SH, LH, and LD is less
than 100ms and, thus, is not presented in the table.

As expected, when we increase the number of agents, the
cost of all algorithms increases for all priority orders. In the
empty grid (a), PP achieves a lower cost than SPP, DSP and
SEQ. This is due to the fact that, in empty grids, many paths
exist for every agent and, therefore, most agents are able to
use one of their shortest paths without delays. This is also
why all priority orders achieve a similar cost in PP.

As for the long corridor grid (b), the runtime of PP is the
highest. DSP not only presents a lower runtime (sometimes,
three orders of magnitude lower than PP) but also provides
solutions of lower costs than PP. This is because (e.g. Fig. 3)
in DSP, the agents use their shortest paths while, when wait-
ing, they do not block other agents with lower priority. This
shows that DSP is more beneficial in dense domains.

To examine the impact of the density on the algorithms,
we run experiments on grids with 20%, 40%, 60%, 80%,
and 100% randomly allocated obstacles (Fig. 4(c)), with 100
agents. The impact of increasing the percentage of obstacles
is more prominent in SPP and PP than in SEQ and DSP in
terms of cost. When only 20% obstacles are present, the cost
of PP is more than 2 times lower than DSP but, when the
percentage of obstacles increases, the cost becomes similar.
PP consumes larger runtime when more obstacles exist. This
is, again, a result of fewer shortest paths being present for
each agent when the grid is denser. With 100% obstacles,
DSP is four order of magnitude faster than PP. We obtain
similar trends for the maze grid (Fig. 4(d)).

The fast algorithms SEQ and DSP with RND, SH, and
LH allow us to experiment with thousands of agents. We
measure the average cost. Fig. 5(a) presents the results of
an experiment performed on a 1× 10,000 long corridor grid
(Fig. 4(b)) with 2,000, 4,000, 6,000, 8,000, 10,000 agents.
Fig. 5(b) presents the results of an experiment performed on
the maze grid (Fig. 4(d)) with 1,000, 2,000, 3,000, 4,000
agents. In both experiments, DSP achieves a significantly
lower cost than SEQ with any priority order. Compared to
RND and SH, DSP obtains the lowest cost when it uses LH.

8 Related Work
Several studies have explored MAPF with imperfect execu-
tion. Shahar et al. (2021) show how to calculate a safe plan
when there is uncertainty on the time it takes to perform a
move action. Other papers (Wagner and Choset 2017; Atz-
mon et al. 2020b,a) focus on the idea of creating a plan that
can withstand unexpected delays during execution and avoid
conflicts. Finally, other authors (Ma, Kumar, and Koenig
2017; Hönig et al. 2019) show how to prevent conflicts dur-
ing execution using execution policies that require agents
with communication capabilities. Execution delays are dif-
ferent from the delays that we intentionally assign to the
agents to create conflict-free plans in our approach.

Our research is related to studies that prioritize agents in
MAPF. van den Berg and Overmars (2005) prioritize agents
according to their query distance, which is similar to the



DSP SEQ SPP PP
k RND SH LH LD RND SH LH LD RND SH LH LD RND SH LH LD

(a)

20 3.4 3.5 3.3 3.0 20.0 14.5 25.2 19.6 2.2 2.1 2.1 2.1 1.9 1.9 1.9 1.9
40 8.1 8.7 7.4 6.8 76.6 54.2 97.6 71.9 4.6 4.6 4.5 4.4 3.7 3.7 3.7 3.7
60 14.7 16.7 12.6 11.2 171.7 123.3 220.9 162.2 7.7 8.0 7.3 7.1 5.7 5.7 5.7 5.7
80 20.7 24.9 17.0 15.2 302.2 212.6 391.7 283.0 10.6 11.4 10.1 9.7 7.5 7.5 7.5 7.5

100 27.9 34.5 22.3 19.5 468.9 328.3 608.2 437.2 13.7 14.6 12.7 12.4 9.3 9.3 9.3 9.3
k

(b)

20 1.3 1.4 1.1 1.1 7.1 4.8 9.8 8.0 1.4 1.5 1.4 1.1 1.5 1.5 1.5 1.1
40 3.0 4.1 2.4 2.4 28.9 18.5 39.1 30.5 4.5 4.3 3.5 2.4 4.8 4.3 4.3 2.4
60 5.3 8.2 3.9 3.9 67.2 43.0 91.2 69.6 8.5 9.2 6.1 3.9 9.8 9.1 8.7 3.9
80 7.7 13.0 5.3 5.3 117.5 74.9 159.7 120.7 12.9 14.6 8.6 5.3 16.5 14.6 14.5 5.3

100 9.8 18.3 6.7 6.7 182.4 115.7 249.7 186.8 18.1 20.8 10.9 6.7 24.6 21.3 21.6 6.7
Obs.

(c)

20% 27.8 32.7 22.3 20.2 478.1 337.0 615.5 347.6 14.3 15.1 13.1 12.7 9.6 9.5 9.6 9.5
40% 30.8 40.6 26.6 22.3 508.9 344.5 672.6 355.2 27.5 34.2 24.5 19.7 12.1 11.9 12.4 11.8
60% 31.9 41.1 26.8 22.6 505.5 347.4 673.9 357.9 31.7 39.5 26.6 21.3 16.0 14.9 17.6 14.5
80% 31.2 40.8 26.4 22.9 514.3 350.8 674.2 361.4 33.2 41.6 27.1 21.5 21.9 19.2 22.5 17.2
100% 30.8 40.6 26.5 22.6 509.5 345.8 670.9 356.4 32.9 40.9 26.1 21.5 44.8 34.9 21.7 21.4
k

(d)

20 10.8 11.4 10.6 10.2 76.6 52.6 100.1 83.0 12.0 11.3 11.5 10.1 7.7 7.7 7.7 7.7
40 27.1 29.2 24.3 23.0 304.9 206.8 399.8 327.5 30.6 30.2 31.0 22.3 16.6 16.4 16.7 16.3
60 43.9 50.4 39.0 36.2 670.1 453.1 879.6 691.4 58.9 57.3 55.1 35.2 26.0 25.6 26.3 25.2
80 62.7 74.4 53.8 50.0 1,169.0 785.9 1,546.7 1,192.3 83.8 85.7 86.4 48.6 36.7 35.6 37.7 34.7

100 86.7 103.1 72.2 65.3 1,842.3 1,242.9 2,448.5 1,903.9 128.4 129.0 124.8 62.9 49.3 47.5 51.2 45.9

Table 1: Average plan cost (in thousands) for DSP, SEQ, SPP, and PP, on (a) a 100 × 100 empty grid (Fig. 4(a)); (b) a 1 × 100
long corridor grid (Fig. 4(b)); (c) a 100 × 100 grid with obstacles and 100 agents (Fig. 4(c)); and (d) a maze grid (Fig. 4(d)).

SPP PP Pre
Pro.k RND SH LH LD RND SH LH LD

(b)

20 0.0 0.1 0.0 0.0 0.1 0.2 0.1 0.2 0.1
40 0.1 0.2 0.0 0.0 0.6 0.7 0.5 0.3 0.1
60 0.3 0.5 0.1 0.0 1.4 1.8 1.0 0.6 0.1
80 0.4 0.9 0.1 0.1 2.5 3.1 1.8 0.8 0.2
100 0.5 1.3 0.1 0.1 3.7 4.6 2.5 1.0 0.3
Obs.

(c)

20% 0.8 1.1 0.5 0.4 0.1 0.1 0.1 0.3 2.5
40% 4.0 6.3 3.2 1.4 4.2 3.6 5.2 4.0 2.0
60% 5.3 8.1 3.9 1.7 5.9 5.2 8.4 5.2 0.5
80% 6.4 9.7 4.7 1.9 9.6 8.1 9.5 5.6 0.4

100% 8.0 11.5 5.3 2.4 26.8 20.6 9.6 5.8 0.3

Table 2: Average planning time (sec) for SPP and PP.

LH priority ordering. Wu, Bhattacharya, and Prorok (2020)
prioritize agents using communication between agents dur-
ing execution to avoid conflicts. Buckley (1989) prioritize
agents so as to prevent conflicts that may be present due to
other agents’ start and goal vertices. Zhang et al. (2022) use
machine-learning methods to prioritize agents. We consider
deterministic calculations for prioritizing the agents.

Online MAPF (OMAPF) (Švancara et al. 2019) extends
MAPF to the case where new agents may appear over time.
Lifelong MAPF (LMAPF) (Li et al. 2020; Wan et al. 2018)
extends MAPF to the case where new tasks arrive over time.
In both LMAPF and OMAPF, it is assumed that the solver is
not aware of future agents/tasks. The solver gets information
about new agents/tasks only when they are about to arrive.
Therefore, it is common to plan paths when it is needed. This
approach results in solving a new (offline) MAPF problem
each time a new agent appears. The SEQ algorithm was orig-
inally defined for OMAPF. Our problem definition is also
related to the definition of well-formed infrastructure (Čáp

10^6

10^7

10^8

10^9

10^10

1,000 2,000 3,000 4,000

#Agents

10^7

10^8

10^9

10^10

10^11

10^12

2,000 4,000 6,000 8,000 10,000

C
o
st

#Agents(a) (b)

Figure 5: Average cost for thousands of agents.

et al. 2015), in which each agent has a path that does not
pass through other agents’ start or goal vertices. However,
we assume that agents appear at their start vertices and dis-
appear when their goals are reached. In the Push and Swap
and Push and Rotate algorithms (Luna and Bekris 2011;
De Wilde, Ter Mors, and Witteveen 2014), each agent fol-
lows a shortest path in turn and it performs a push action
to resolve conflicts. In our problem, as agents disappear at
goals, no such actions are needed. Thus, under our assump-
tions, these two algorithms are similar to SEQ.

9 Conclusion and Future Work
In this paper, we define geometric constraints for MAPF and
show how they can be used to determine safe delays for the
agents. We also propose DSP, an algorithm that, given a pri-
ority order, approximates minimal safe delays for quickly
finding a plan. We show experimentally that DSP is able
to find low-cost solutions for instances with thousands of
agents with a runtime that is often several orders of magni-
tudes smaller than related methods. In future work, we will
use the geometric constraints for other algorithms, e.g. pri-
ority based-search (Ma et al. 2019), and extend them for
solving related problems, such as OMAPF and LMAPF.



Acknowledgements
For the purpose of open access, the author(s) has applied
a Creative Commons Attribution (CC BY) licence to any
Author Accepted Manuscript version arising. This work
is partially supported by Innovate UK (VersaTile Grant -
10005401), Leverhulme Trust (Grant VP1-2019-037), and
MIUR (Grant CUP: E11G18000350001).

References
Atzmon, D.; Stern, R.; Felner, A.; Sturtevant, N. R.; and
Koenig, S. 2020a. Probabilistic Robust Multi-Agent Path
Finding. In ICAPS, 29–37.
Atzmon, D.; Stern, R.; Felner, A.; Wagner, G.; Barták, R.;
and Zhou, N.-F. 2020b. Robust multi-agent path finding and
executing. JAIR, 67: 549–579.
Buckley, S. 1989. Fast motion planning for multiple mov-
ing robots. IEEE International Conference on Robotics and
Automation, 1: 322–326.
De Wilde, B.; Ter Mors, A. W.; and Witteveen, C. 2014.
Push and Rotate: A Complete Multi-Agent Pathfinding Al-
gorithm. Journal of Artificial Intelligence Research, 443—-
492.
Erdmann, M.; and Lozano-Pérez, T. 1987. On Multiple
Moving Objects. Algorithmica, 2(1–4): 477–521.
Ho, F.; Salta, A.; Geraldes, R.; Goncalves, A.; Cavazza, M.;
and Prendinger, H. 2019. Multi-Agent Path Finding for UAV
Traffic Management. In AAMAS, 131–139.
Hönig, W.; Kiesel, S.; Tinka, A.; Durham, J. W.; and Aya-
nian, N. 2019. Persistent and Robust Execution of MAPF
Schedules in Warehouses. IEEE Robotics and Automation
Letters, 4(2): 1125–1131.
Lenstra, J.; Rinnooy Kan, A.; and Brucker, P. 1977. Com-
plexity of Machine Scheduling Problems, volume 1 of Stud-
ies in Integer Programming. Elsevier.
Li, J.; Tinka, A.; Kiesel, S.; Durham, J. W.; Kumar, T. K. S.;
and Koenig, S. 2020. Lifelong Multi-Agent Path Finding in
Large-Scale Warehouses. In AAAI, 11272–11281.
Luna, R.; and Bekris, K. E. 2011. Push and Swap: Fast Co-
operative Path-Finding with Completeness Guarantees. In
the International Joint Conference on Artificial Intelligence
(IJCAI), 294––300.
Ma, H. 2021. A Competitive Analysis of Online Multi-
Agent Path Finding. In ICAPS, 234–242.
Ma, H.; Harabor, D.; Stuckey, P. J.; Li, J.; and Koenig, S.
2019. Searching with Consistent Prioritization for Multi-
Agent Path Finding. In AAAI, 7643–7650.
Ma, H.; Kumar, T. K. S.; and Koenig, S. 2017. Multi-Agent
Path Finding with Delay Probabilities. In AAAI, 3605–3612.
Shahar, T.; Shekhar, S.; Atzmon, D.; Saffidine, A.; Juba, B.;
and Stern, R. 2021. Safe Multi-Agent Pathfinding with Time
Uncertainty. JAIR, 70: 923–954.
Sharon, G.; Stern, R.; Felner, A.; and Sturtevant, N. R. 2015.
Conflict-based search for optimal multi-agent pathfinding.
Artificial Intelligence, 219: 40–66.

Sharon, G.; Stern, R.; Goldenberg, M.; and Felner, A. 2013.
The increasing cost tree search for optimal multi-agent
pathfinding. Artificial Intelligence, 195: 470–495.
Silver, D. 2005. Cooperative Pathfinding. In Artificial Intel-
ligence and Interactive Digital Entertainment (AIIDE), 117–
122.
Stern, R.; Sturtevant, N. R.; Felner, A.; Koenig, S.; Ma, H.;
Walker, T. T.; Li, J.; Atzmon, D.; Cohen, L.; Kumar, T. K. S.;
Barták, R.; and Boyarski, E. 2019. Multi-Agent Pathfinding:
Definitions, Variants, and Benchmarks. In SoCS, 151–159.
Sturtevant, N. R. 2012. Benchmarks for grid-based pathfind-
ing. IEEE Transactions on Computational Intelligence and
AI in Games, 4(2): 144–148.
Surynek, P. 2010. An Optimization Variant of Multi-Robot
Path Planning Is Intractable. In AAAI, 1261–1263.
Švancara, J.; Vlk, M.; Stern, R.; Atzmon, D.; and Barták, R.
2019. Online multi-agent pathfinding. In AAAI, 7732–7739.
van den Berg, J.; and Overmars, M. 2005. Prioritized motion
planning for multiple robots. In the IEEE/RSJ International
Conference on Intelligent Robots and Systems, 430–435.
Wagner, G.; and Choset, H. 2015. Subdimensional expan-
sion for multirobot path planning. Artificial Intelligence,
219: 1–24.
Wagner, G.; and Choset, H. 2017. Path Planning for Multiple
Agents under Uncertainty. In ICAPS, 577–585.
Wan, Q.; Gu, C.; Sun, S.; Chen, M.; Huang, H.; and Jia,
X. 2018. Lifelong Multi-Agent Path Finding in A Dynamic
Environment. In the International Conference on Control,
Automation, Robotics and Vision (ICARCV), 875–882.
Wen, L.; Liu, Y.; and Li, H. 2022. CL-MAPF: Multi-Agent
Path Finding for Car-Like robots with kinematic and spa-
tiotemporal constraints. Robotics and Autonomous Systems,
150: 103997.
Wu, W.; Bhattacharya, S.; and Prorok, A. 2020. Multi-Robot
Path Deconfliction through Prioritization by Path Prospects.
In ICRA, 9809–9815.
Yu, J.; and LaValle, S. M. 2013. Structure and Intractability
of Optimal Multi-Robot Path Planning on Graphs. In AAAI,
1444–149.
Zhang, S.; Li, J.; Huang, T.; Koenig, S.; and Dilkina, B.
2022. Learning a Priority Ordering for Prioritized Planning
in Multi-Agent Path Finding. In SoCS, 208–216.
Čáp, M.; Novák, P.; Kleiner, A.; and Selecký, M. 2015. Pri-
oritized Planning Algorithms for Trajectory Coordination of
Multiple Mobile Robots. IEEE Transactions on Automation
Science and Engineering, 12(3): 835–849.


